Elastic moduli of untreated, demineralized and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material.

نویسندگان

  • E Hamed
  • E Novitskaya
  • J Li
  • P-Y Chen
  • I Jasiuk
  • J McKittrick
چکیده

A theoretical experimentally based multi-scale model of the elastic response of cortical bone is presented. It portrays the hierarchical structure of bone as a composite with interpenetrating biopolymers (collagen and non-collagenous proteins) and minerals (hydroxyapatite), together with void spaces (porosity). The model involves a bottom-up approach and employs micromechanics and classical lamination theories of composite materials. Experiments on cortical bone samples from bovine femur include completely demineralized and deproteinized bones as well as untreated bone samples. Porosity and microstructure are characterized using optical and scanning electron microscopy, and micro-computed tomography. Compression testing is used to measure longitudinal and transverse elastic moduli of all three bone types. The characterization of structure and properties of these three bone states provides a deeper understanding of the contributions of the individual components of bone to its elastic response and allows fine tuning of modeling assumptions. Very good agreement is found between theoretical modeling and compression testing results, confirming the validity of the interpretation of bone as an interpenetrating composite material.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents.

The mechanical properties of fully demineralized, fully deproteinized and untreated cortical bovine femur bone were investigated by compression testing in three anatomical directions (longitudinal, radial and transverse). The weighted sum of the stress-strain curves of the treated bones was far lower than that of the untreated bone, indicating a strong molecular and/or mechanical interaction be...

متن کامل

Compressive mechanical properties of demineralized and deproteinized cancellous bone.

A method to completely demineralize and deproteinize bone was used to investigate the mechanical properties of either the mineral or protein phase in cancellous bone and compared to an untreated one. Compression tests on cancellous bovine femur and elk antler (Cervus elaphus canadensis) were performed on demineralized, deproteinized, and untreated samples in an air-dry condition. Results showed...

متن کامل

Elastic properties of cancellous bone in terms of elastic properties of its mineral and protein phases with application to their osteoporotic degradation

The elastic modulus of cancellous bone is derived based on the measured elastic properties of separate mineral and protein phases. Adopting the mechanics of cellular solids approach, the moduli of elasticity of cancellous, deproteinated and demineralized bone are expressed in terms of the trabecular moduli of elasticity and the corresponding density ratios using the power law expressions. The Y...

متن کامل

The axisymmetric computational study of a femoral component to analysis the effect of titanium alloy and diameter variation.

This work presents a numerical approach in order to predict the influence of implant material stiffness in a femoral component design when submitted in compression. The implant success depends on the transferred load to the neighboring bone. The finite element method can be used to analysis the stress and strain distribution in the femoral component allowing to improve the implant selection. Fo...

متن کامل

Heterotopic Ossification around the Knee after Internal Fixation of a Complex Tibial Plateau Fracture Combined with the Use of Demineralized Bone Matrix (DBM): A Case Report

Demineralized bone matrix has been successfully commercialized as an alternative bone graft material that not only can function as filler but also as an osteoinductive graft. Numerous studies have confirmed its beneficial use in clinical practice. Heterotopic ossification after internal fixation combined with the use of demineralized bone matrix has not been widely reported. In this paper we de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biomaterialia

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2012